Conditional Volatility Forecasting in a Dynamic Hedging Model

نویسندگان

  • MICHAEL S. HAIGH
  • M. S. Haigh
چکیده

This paper addresses several questions surrounding volatility forecasting and its use in the estimation of optimal hedging ratios. Specifically: Are there economic gains by nesting time-series econometric models (GARCH) and dynamic programming models (therefore forecasting volatility several periods out) in the estimation of hedging ratios whilst accounting for volatility in the futures bid–ask spread? Are the forecasted hedging ratios (and wealth generated) from the nested bid–ask model statistically and economically different than standard approaches? Are there times when a trader following a basic model that does not forecast outperforms a trader using the nested bid–ask model? On all counts the results are encouraging—a trader that accounts for the bid–ask spread and forecasts volatility several periods in the nested model will incur lower transactions costs and gain significantly when the market suddenly and abruptly turns. Copyright © 2005 John Wiley & Sons, Ltd. key words bid–ask spread, multi-period hedging, dynamic programming, forecasting volatility, multivariate GARCH

منابع مشابه

Presenting a model for Multiple-step-ahead-Forecasting of volatility and Conditional Value at Risk in fossil energy markets

Fossil energy markets have always been known as strategic and important markets. They have a significant impact on the macro economy and financial markets of the world. The nature of these markets are accompanied by sudden shocks and volatility in the prices. Therefore, they must be controlled and forecasted by using appropriate tools. This paper adopts the Generalized Auto Regressive Condition...

متن کامل

Modeling Gold Volatility: Realized GARCH Approach

F orecasting the volatility of a financial asset has wide implications in finance. Conditional variance extracted from the GARCH framework could be a suitable proxy of financial asset volatility. Option pricing, portfolio optimization, and risk management are examples of implications of conditional variance forecasting. One of the most recent methods of volatility forecasting is Real...

متن کامل

Dynamic Correlation between Oil Markets and Financial Markets and Oil and Petrochemical Industries in Iran

In this paper we study the effect of volatility in Brent oil prices on the important indices of financial markets in Iran, as well as the return on gold, from 2008 to 2018 using the Multivariate Exponential GARCH Model (MVEGARCH). We also use the ADCC-FIGARCH model to examine the asymmetric dynamic conditional correlation between Brent oil prices and financial markets in Iran. The results of th...

متن کامل

Modelling Dynamic Conditional Correlations in Spot, Forward and Futures Returns

Volatility (or risk) is a key variable in many areas of finance, and there are many applications that require an accurate estimate of volatility. One important application is in designing optimal dynamic hedging strategies. Engle (1982) proposed an autoregressive conditional heteroscedasticity (ARCH) model, which allows the conditional variance to change over time. This model has been extended ...

متن کامل

Modeling Volatility Spillovers in Iran Capital Market

This paper investigates the conditional correlations and volatility spillovers between the dollar exchange rate return, gold coin return and crude oil return to stock index return. Monthly returns in the 144 observations (2005 - 2017) are analyzed by constant conditional correlation, dynamic conditional correlation, VARMA-GARCH and VARMA-AGARCH models. So this paper presents interdependences in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005